Al2o3 применение. Коронки из оксида алюминия

В виде самого обычного глинозема, его химическая формула - AL2O3. На вид это кристаллы, не имеющие цвета, которые при температуре в 2044°С начинают плавиться, а при достижении отметки в 3530 °С закипают.

В природном окружении единственной устойчивой модификацией вещества является корунд, имеющий плотность 3,99 г/см3. Это очень твердый образец, принадлежащий к девятому уровню по таблице Мооса. Величина коэффициента преломления составляет: для обыкновенного луча - 1,765, и 1,759 для необыкновенного. В природном окружении оксид алюминия часто содержит в себе различные оксиды металлов, поэтому, минерал корунда может приобретать различные оттенки своей окраски. Например, таковыми являются сапфиры, рубины и другие драгоценные камни. В таком виде оксид алюминия может быть получен и лабораторно-химическим способом. Для этого используют метастабильные формы А12О3 и разлагают их термическим способом. Также в качестве источника получения алюминия оксида лабораторным методом используют

Стандартная модификация соединения представляет собой тетрагоническую кристаллическую решетку, содержащую в своем составе примерно 1-2% воды. Можно получить и аморфный по своей структуре оксид алюминия - алюмогель, для чего гелевидный раствор AL(OH) 3 обезвоживают и получают вещество в виде пористой прозрачной массы.

Алюминия оксид совершенно нерастворим в воде, но может хорошо растворяться в криолите, разогретом до высокой температуры. Вещество амфотерно. Характерно такое свойство синтезированного алюминия оксида, как обратная зависимость температуры его образования и химической активности. Как искусственный (то есть полученный при температуре более 1200°С), так и природный корунд в обычной среде проявляют практически стопроцентную химическую инертность и полное отсутствие гигроскопичности.

Оксид начинает активно проявлять при температурах около 1000°С, когда он начинает интенсивно взаимодействовать с такими веществами, как различные щелочи, карбонаты При этом взаимодействии образуются алюминаты. Более медленно соединение вступает в реакции с SiO2 , а также различного рода шлаками кислыми. В результате этих взаимодействий получаются алюмосиликаты.

Алюмогели и оксид алюминия, которые получены путем обжига любого из гидроксидов алюминия при температуре не менее 550°С, обладают очень высокой гигроскопичностью, отлично вступают в и активно взаимодействуют с кислотными и щелочными растворами.

Как правило, в качестве сырья для получения алюминия оксида служат бокситы, алуниты, а также нефелины. При содержании в них рассматриваемого вещества более 6-7% производство ведется основным способом - методом Байера, а при меньшем содержании вещества используют метод спекания руды с известью или содой. Метод Байера представляет собой обработку измельченной породы в затем бокситы обрабатывают щелочными растворами при температуре 225-250°С. Полученный таким образом состав алюмината натрия разбавляют водным раствором и фильтруют. В процессе фильтрации шлам, содержащий оксид алюминия, свойства которого соответствуют стандартным, подвергают разложению на центрифугах. Такая технология дает возможность получать 50%-ный выход вещества. Кроме того, применение данного метода позволяет сохранить для использования в последующий операциях по выщелачиванию бокситов.

Как правило, полученный синтетическим методом алюминия оксид используют в качестве промежуточного материала для получения чистого алюминия. В промышленности он применяется в качестве сырья для изготовления огнеупорных материалов, абразивных и керамических режущих инструментов. Современные технологии активно применяют монокристаллы оксида алюминия в производстве часов, ювелирных изделий.

Мы отправляем его в воздух и запускаем в космос, ставим на плиту, строим из него здания, изготавливаем шины, мажем на кожу и лечим им язву... Вы еще не поняли? Речь идет об алюминии.

Попробуйте перечислить все области применения алюминия и обязательно ошибетесь. Скорее всего о существовании многих из них вы даже не подозреваете. Все знают, что алюминий - материал авиастроителей. Но как насчет автомобилестроения или, скажем. медицины? Знаете ли вы, что алюминий является пищевой добавкой Е-137, которая обычно используется как краситель, придающий продуктам серебристый оттенок?

Алюминий - элемент, который с легкостью образует устойчивые соединения с любыми металлами, кислородом, водородом, хлором и многими другими веществами. В результате подобных химических и физических воздействий получаются диаметрально разные по своим свойствам сплавы и соединения.

Использование оксидов и гидроксидов алюминия

Сферы применения алюминия настолько обширны, что для ограждения товаропроизводителей, конструкторов и инженеров от непреднамеренных ошибок, в нашей стране применение маркировки сплавов алюминия - стало обязательным. Каждому сплаву или соединению присваивается свое буквенно-цифровое обозначение, которое в дальнейшем позволяет быстро отсортировать их и направить для дальнейшей обработки.

Наиболее распространенные природные соединения алюминия - его оксид и гидроксид. в природе они существуют исключительно в виде минералов - корундов, бокситов, нефелинов, пр. - и в качестве глинозема. Применение алюминия и его соединений связано с ювелирной, косметологической, медицинской сферами, химической промышленностью и строительством.

Цветные, "чистые" (не мутные) корунды - это известные всем нам драгоценности - рубины и сапфиры. Однако по своей сути они - не что иное, как самый обычный оксид алюминия. Помимо ювелирной сферы, применение оксида алюминия распространяется на хим.промышленность, где он обычно выступает адсорбентом, а также на производство керамической посуды. Керамические котелки, горшочки, чашки обладают замечательными жаропрочными свойствами именно благодаря содержащемуся в них алюминию. Свое применение окись алюминия нашла и как материал для изготовления катализаторов. Нередко оксиды алюминия добавляют в бетон для его лучшего затвердевания, а стекло, в которое добавили алюминий, становится жаропрочным.

Перечень областей применения гидроксида алюминия выглядит еще более внушительно. Благодаря способности поглощать кислоту и оказывать каталитическое действие на иммунитет человека, гидроксид алюминия используется при изготовлении лекарств и вакцин от гепатитов типа "А" и "В" и столбнячной инфекции. Им также лечат почечную недостаточность, обусловленную наличием большого числа фосфатов в организме. Попадая в организм, гидроксид алюминия вступает в реакцию с фосфатами и образует неразрывные с ними связи, а затем естественным путем выводится из организма.

Гидроксид, в виду его отличной растворимости и не токсичности, нередко добавляют в пасту для чистки зубов, шампунь, мыло, примешивают к солнцезащитным средствам, питательным и увлажняющим кремам для лица и тела, антиперсперантам, тоникам, очищающим лосьонам, пенкам и пр. Если необходимо равномерно и стойко окрасить ткань, то в краситель добавляют немного гидроксида алюминия и цвет буквально "втравляется" в поверхность материи.

Применение хлоридов и судьфатов алюминия

Крайне важными соединениями алюминия являются также хлориды и сульфаты. Хлорид алюминия в естественном состоянии не встречается, однако его довольно просто получить промышленным путем из бокситов и каолинов. Применение хлорида алюминия ввиде катализатора довольно однобоко, но практически бесценно для нефтеперерабатывающей отрасли.

Алюминиевые сульфаты существуют в естественном состоянии в качестве минералов вулканических пород и известны своей способностью к абсорбации воды из воздуха. Применение сернокислого алюминия распространяется на косметическую и текстильную промышленность. В первой, он выступает в качестве добавки в антиперсперанды, во второй - в виде красителя. Интересно применение сульфата алюминия в составе реппелентов от насекомых. Сульфаты не только отпугивают комаров, мух и мошек, но и обезболивают место укуса. Однако несмотря на ощутимую пользу, сульфаты алюминия неоднозначно действуют на здоровье людей. Если вдохнуть или проглотить сульфат алюминия, можно получить серьезное отравление.

Алюминиевые сплавы - основные области применения

Искусственно полученные соединения алюминия с металлами (сплавы), в отличие от естественных образований, могут иметь такие свойства, какие пожелает сам производитель - достаточно изменить состав и количество легирующих элементов. На сегодняшний день существуют практически безграничные возможности для получения сплавов алюминия и их применения.

Самая известная отрасль использования алюминиевых сплавов - авиастроение. Самолеты практически полностью изготовлены из алюминиевых сплавов. Сплавы цинка, магния и алюминия дают небывалую прочность, используемую в обшивке самолетов и изготовлении деталей конструкции.

Аналогично используются алюминиевые сплавы и в строении кораблей, подводных лодок и мелкого речного транспорта. Здесь из алюминия наиболее выгодно делать надстроечные конструкции, они более чем в половину снижают вес судна, при этом не ухудшая их надежности.

Подобно самолетам и кораблям, автомобили с каждым годом все больше и больше становятся "алюминиевыми". Алюминий применяется не только в деталях кузова, теперь это еще и рамы, балки, стойки и панели кабины. Благодаря химической инертности алюминиевых сплавов, низкой подверженности коррозии и теплоизоляционным свойствам из сплавов алюминия изготавливают цистерны для перевозок жидких продуктов.

Широко известно применение алюминия в промышленности. Нефте- и газодобыча не были бы такими как сейчас, если бы не чрезвычайно коррозионстойкие, химически инертные трубопроводы из алюминиевых сплавов. Буры, сделанные из алюминия, весят в несколько раз меньше, а значит легко перевозятся и монтируются. И это не говря уже о разного рода, резервуарах, котлах и прочих емкостях...

Из алюминия и его сплавов производят кастрюли, сковороды, противни, половники и прочую домашнюю утварь. Алюминиевая посуда отлично проводит тепло, очень быстро нагревается, при этом легко чистится, не вредит здоровью и продуктам. На алюминиевой фольге мы запекаем мясо в духовке и выпекаем пироги, в алюминий упакованы масла и маргарины, сыры, шоколад и конфеты.

Крайне важная и перспективная область - применение алюминия в медицине. Помимо тех областей использования (вакцины, почечные лекарства, адсорбенты), о которых говорилось ранее, следует также упомянуть использование алюминия в лекарствах от язвы и изжоги.

Из всего вышесказанного можно сделать один вывод - марки алюминия и их применение слишком многообразны, чтобы посвящать им одну небольшую статью. Об алюминии лучше писать книги, ведь не зря же его называют "металлом будущего".


Краткая характеристика оксида алюминия:

Оксид алюминия – неорганическое вещество, не имеющее цвета.

Оксид алюминия содержит три атома кислорода и два атома алюминия.

Химическая формула оксида алюминия Al 2 O 3 .

В природе встречается в виде глинозема и корунда.

В воде не растворяется.

Амфотерный оксид. Проявляет в зависимости от условий либо основные, либо кислотные свойства. Свои химические свойства проявляет будучи разогретым до высоких температур- порядка 1000 о С.


Модификации оксида алюминия:

Известны следующие кристаллические модификации оксида алюминия: α-Al 2 O 3 , θ-Al 2 O 3 , γ-Al 2 O 3 , κ-Al 2 O 3 , η-Al 2 O 3 , χ-Al 2 O 3 .

Модификации оксида алюминия имеют различные плотности:

α-Al 2 O 3 – 3,99 г/см 3 ,

θ-Al 2 O 3 – 3,61 г/см 3 ,

γ-Al 2 O 3 – 3,68 г/см 3 ,

κ-Al 2 O 3 – 3,77 г/см 3 .

α-модификация оксида алюминия является единственной термодинамически стабильной формой Al 2 O 3 .

Физические свойства оксида алюминия*:

Наименование параметра: Значение:
Химическая формула Al 2 O 3
Синонимы и названия на иностранном языке aluminum oxide α-form (англ.)

corundum (англ.)

алюминия окись α-форма (рус.)

корунд (рус.)

Тип вещества неорганическое
Внешний вид бесцветные тригональные кристаллы
Цвет из-за примесей оксид алюминия, как минерал, может быть окрашен в разные цвета
Вкус —**
Запах
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м 3 3990
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см 3 3,99
Температура кипения, °C 3530
Температура плавления, °C 2050
Молярная масса, г/моль 101,96
Твердость по шкале Мооса 9

Примечание:

* оксида алюминия α-формы.

** — нет данных.

Получение оксида алюминия:

Оксид алюминия получают методом восстановления алюминием металлов из их оксидов: хрома , молибдена , вольфрама , ванадия и др. (металлотермия).

Он получается в результате следующих металлотермических реакций:

Cr 2 O 3 + 2Al → Al 2 O 3 + 2Cr (t = 800 o C);

3CuO + 2Al → Al 2 O 3 + 3Cu (t = 1000-1100 o C) и т.д.

3. реакция оксида алюминия, углерода и азота:

Al 2 O 3 + 3С + N 2 → 2AlN + 3CО (t = 1600-1800 °C).

В результате реакции образуется соль – нитрид алюминия и оксид углерода.

4. реакция оксида алюминия с оксидом натрия :

Na 2 О + Al 2 O 3 → 2NaAlО 2 (t = 2000 °C).

В результате реакции образуется соль – алюминат натрия.

5. реакция оксида алюминия с оксидом калия :

K 2 О + Al 2 O 3 → 2KAlО 2 (t = 1000 °C).

В результате реакции образуется соль – алюминат калия.

6. реакция оксида алюминия с оксидом магния :

MgО + Al 2 O 3 → MgAl 2 О 4 (t = 1600 °C).

В результате реакции образуется соль – алюминат магния (шпинель).

7. реакция оксида алюминия с оксидом кальция :

CaО + Al 2 O 3 → Ca(AlО 2) 2 (t = 1200-1300 °C).

В результате реакции образуется соль – алюминат кальция.

8. реакция оксида алюминия с оксидом азота :

Al 2 O 3 + 3N 2 О 5 → 2Al(NO 3) 3 (t = 35-40 °C).

В результате реакции образуются соль – нитрат алюминия .

9. реакция оксида алюминия с оксидом кремния :

Al 2 O 3 + SiО 2 → Al 2 SiО 5 .

В результате реакции образуется соль – силикат алюминия. Реакция протекает при спекании реакционной смеси.

10. реакция оксида алюминия с гидроксидом натрия :

Al 2 O 3 + 2NaOH → 2NaAlO 2 + H 2 О (t = 900-1100 o C).

Сплавление оксида алюминия с сухим гидроксидом натрия. В результате реакции образуется соль – алюминат натрия и вода.

11. реакция оксида алюминия с гидроксидом калия :

Al 2 O 3 + 2KOH → 2KAlO 2 + H 2 О (t = 900-1100 o C).

Сплавление оксида алюминия с сухим гидроксидом калия. В результате реакции образуется соль – алюминат калия и вода.

12. реакция оксида алюминия с карбонатом натрия:

Al 2 O 3 + Na 2 СO 3 → 2NaAlO 2 + СО 2 (t = 1000-1200 o C).

В результате реакции образуется соль – алюминат натрия и оксид углерода.

13. реакция оксида алюминия с плавиковой кислотой:

Al 2 O 3 + 6HF → 2AlF 3 + 3H 2 O (t = 450-600 o C).

В результате химической реакции получается соль – фторид алюминия и вода.

14. реакция оксида алюминия с азотной кислотой:

Al 2 O 3 + 6HNO 3 → 2Al(NO 3) 2 + 3H 2 O.

В результате химической реакции получается соль – нитрат алюминия и вода .

Аналогично проходят реакции оксида алюминия и с другими кислотами.

Статьи по теме: