Мальцев т с вопросы земледелия. Легендарный академик «от сохи» Терентий Мальцев

Технология безотвальной обработки почвы.

Технология безотвальной обработки почвы – ресурсосберегающая и экономически выгодная, она предусматривает, прежде всего, обработку почвы на глубине 20-30 см без переворота пласта с сохранением на поверхности поля значительной части пожнивных остатков предшествующей культуры. Широко применяется в условиях недостаточного увлажнения, в степных р-нах, подверженных ветровой эрозии и на склоновых землях. На полях безотвальную обработку основную обработку почвы выполняют культиваторами-плоскорезами КПШ-9, КПШ-5, КШН-6, КШЛ-10, КШ-3,6П и др.

Безотвальной обработки почвы, разработанная Т. С. Мальцевым и применяемая в Зауралье, предусматривает глубокое рыхление почвы на 35-40 см, которое проводится раз в 3-5 лет, в сочетании с ежегодными поверхностными обработками на 10-12 см.

Безотвальная обработка почвы - неотъемлемая часть почвозащитной системы земледелия. Она включает обработку почвы безотвальными чизельными плугами и глубокорыхлителями-плоскорезами, мелкую обработку - культиваторами-плоскорезами, противоэрозионными и штанговыми культиваторами. Эти орудия хорошо рыхлят почву, подрезают сорняки, сохраняют стерню на пашне, обеспечивая надёжную защиту почвы от ветровой эрозии и повышение урожайности зерновых.

Технология посева. Агрегаты, способы движения

Чтобы получить хороший урожай, сев каждой культуры необходимо провести как можно быстрее в лучшие сроки. Для нормального и одновременного развития все растения должны получать достаточное и одинаковое количество питательных веществ и влаги. Необходимая одному растению площадь питания зависит от вида культуры и запаса влаги. На хорошо удобренной почве одному растению требуется 14-16 см 2 пашни.

Очень важное значение для роста растений имеет глубина заделки семян. Наиболее удачны всходы зерновых культур при заделке семян на глубину 3-5 см. При посеве все семена должны укладываться на уплотненную почву и прикрываться рыхлой. Эти требования успешно выполняют при помощи сеялок. Сеялки распределяют семена по участку в зависимости от выращиваемой культуры, почвенных и климатических условий.

Основной способ посева - рядовой, при котором семена высевают рядами. Ширина междурядья зависит от высеваемой культуры. Для зерновых она обычно составляет 12-15 см.

Свеклу, кукурузу, подсолнечник, овощные культуры, которым нужна большая площадь питания, сеют рядовым широкорядным способом. Это позволяет механизировать обработку междурядий и вносить удобрения между рядками растений. При выращивании семенников трав, проса, овощных культур применяют ленточный посев. Это обычный рядовой посев, но через каждые 2-4 ряда делают промежуток 30-60 см.

В зависимости от способа посева сеялки делят на рядовые, узкорядные, гнездовые, квадратно-гнездовые и однозерновые. По своему назначению они подразделяются на зерновые, свекловичные, овощные, травяные, кукурузные и др. Комбинированные сеялки предназначены для одновременного посева семян зерновых культур и трав (зернотравяные), а также для посева зерновых с одновременным внесением в рядки минеральных удобрений.

Основной базовой зерновой сеялкой является СЗ-3,6, для одновременного посева семян зерновых культур и трав предназначена зернотравяная сеялка СЗТ-3,6. На базе этих сеялок созданы более универсальные типа СЗС-2,1; СЗС-2, 1М; СЗС-6; СЗС-9, предназначенные для рядового посева зерновых культур одновременно с культивацией, подрезанием сорняков, внесением в рядки гранулированных удобрений и прикатыванием почвы в засеянных рядках на почвах, поврежденных ветровой эрозией.

Посевной агрегат должен двигаться прямолинейно. Скорость движения сеялок не должна превышать предельную, обеспечивающую устойчивый ход сошника на заданной глубине, равномерное распределение и заделку семян. Способы движения посевных агрегатов: челночный, диагонально-перекрестный при конфигурации поля близкой к квадратной, диагонально-перекрестный при прямоугольной форме поля.

Технология внесения удобрений. Условие поточности.

Для обеспечения нормальной работы машин для внесения удобрений к удобрениям предъявляются следующие требования: все виды удобрений должны быть подготовлены для внесения их в почву. Основными операциями подготовки минеральных удобрений являются: измельчение, просеивание и смешивание. Органические удобрения, как правило, смешиваются для получения различных компостов; удобрения должны иметь определенный размер гранул или комков. Слежавшиеся удобрения перед их внесением в почву должны быть измельчены и просеяны через сито с размером отверстий 2…3 мм; минеральные удобрения должны иметь определенную влажность. К машинам для внесения удобрений предъявляются следующие требования: машины должны одинаково хорошо высевать минеральные удобрения как в виде гранул, так и в виде порошка. При разбрасывании или разливе органических удобрений машины должны обеспечивать равномерное распределение удобрений по поверхности почвы.

Существуют несколько способов внесения удобрений, основными из которых являются: основное или допосевное; припосевное, проводимое во время посева или посадки, в период вегетации; после посева или посадки - подкормка растений. Основное внесение заключается в разбрасывании удобрений по поверхности поля с последующей их заделкой в почву почво-обрабатыващими орудиями. Припосевное внесение применяется во время посева семян или при посадке лесных культур. Подкормка заключается во внесении легкоусвояемых удобрений в сухом или растворенном виде (жидкая подкормка) в течение вегетации растений.

В зависимости от способа и вида машины для внесения удобрений классифицируются по следующим признакам: 1 . По способу внесения удобрений: на машины для основного внесения; машины для припосевного внесения; машины для подкормки - машины для внесения минеральных и машины для внесения органических удобрений. 2. По виду удобрений: машины для основного способа внесения удобрений - для внесения минеральных удобрений (С3-3,6; СО-4,2; CJIT-3,6 и др.); машины для подкормки - машины для внесения твердых минеральных (КРН-2,8МО; КРСШ-2,8А; КРН-4,2; КОН-2,8ПМ и др.) и машины для внесения жидких удобрений (ПОМ-бЗО, ЗЖВ-1,8 и др.). 3. По внешнему виду удобрений: машины для внесения минеральных удобрений для основного способа - машины для внесения гранулируемых (РТТ-4,2; РУМ-8; 1РМГ-4; НРУ-0,5 и др.) и машины для внесения пылевидных удобрений (АРУП-8; АРУП-10; РУП-8; РУП-10); машины для внесения органических удобрений для основного способа - машины для внесения связных (1ПТУ-4; РТО-4; РПН-4; РОУ-5 и др.) и машины для внесения жидких удобрений (ЗЖВ-1,8; РЖУ-3,6; РЖТ-4; ПОУ; ПОМ-бЗО и др.). 4 . По способу соединения с энергетическим средством - на прицепные, навесные, монтируемые, самоходные.

Баланс мощности трактора

Ne=Nкр+Nt±Nx+Nδ+Nм+Nн, кВт

Nкр – мощность на крюке

Nкр=Pкр*Vp/3.6

Nt – мощность на самопередвижение

Nx – мощность затрачиваемая на преодоление подъема

Nδ – мощность на буксование

Nδ=Pдв*δ*Vp/360

Pдв – движущая сила трактора

Nм – потеря мощности в трансмиссии

Nм=Ne (1-ηм)

Ne – номинальная мощность

ηм - механический КПД трансмиссии

Nн – неиспользуемая мощность

Nн=Vт(Pдв-Рк/3,6)

Рк- касательная сила на ободе колеса

Теоретическая, сменная и суточная производительность агрегата

Lp – рабочая длина поля

W –теоритическая производительность

Wч=0,1*Bh*Vp*Г, га/м (Г-тау)

Wм- часовая производительность

Wсм=Wч*Tсм, га/см

Wсм- сменная производительность

Wсут=Wч*Tсут, га/сут

Wсут – суточная производительность

Wн=(Ne/Kсхм)*ηи*β*Г, (Г-тау)

Wн – производительность агрегата в функции мощности

Ксхм – удельное сопротивление агрегата, кН/м

Β – коэф. Использования конструктивной ширины захвата

Г – коэф. Использования времени смены

ηи – коэф. Использования тягового усилия

Пути повышения производительности: -комплектование агрегатов с учетом наиболее полного использования мощности двигателя; - работа МТА на скоростях соответствующих максимальному тяговому КПД и наибольшей тяговой мощности трактора; - правильная организация движения агрегатов; - выбор рациональных способов движения; - надлежащая подготовка рабочих органов; - снижение затрат времени на ТО, тенолог. регулировки, подготовительно-заключительных операций, механизация вспомогательных операций; - снижение удельного сопротивления машин орудий за счет качественного ТО и соблюдений основных эксплуатационных регулировок агрегата; - повышение суточной и сезонной производительности тракторов, за счет перехода на 2-х сменную или 3-х сменную работу; - совмещение технологических операций.

Технология отвальной обработки почвы

Агротехнические требования к отвальной обработке: - орудие должно обеспечивать выполнение технологического процесса в сроки: - отклонение от заданной глубины не должно превышать 1…2 см или ±5%: - не допускаются огрехи и пропуски; - допускается огрех под свальным гребнем, но не более половины длины; - поворотные полосы должны быть полностью обработаны; - комковатость должна составлять 1…10 мм, наличие эрозионно-опасных частиц (0,25) нежелательно; - свальные гребни не должны превышать фона пашни более чем на 10 см.

Виды вспашки.

Культурная – вспашка и использованием предплужников или углоснимов.

Оборот пласта – это вспашка, при которой пласты оборачиваются на 180 0 С. Так пашут задернелые почв, которые разрыхлить плугом не удается, а для последующей разделки пластов другими орудиями необходимо их упорядоченное расположение.

Плантажная – вспашка на глубину 40 см и более. Ее проводят перед посевом лесных и кустарниковых пород.

Гребнисто-ступенчатая – вспашка поперек склона, при которой гребни на поверхности поля и ступенчатый профиль плужной подошвы получаются при помощи корпусов плуга, установленных на разную глубину. Выполняют в целях борьбы с водной эрозией почвы на склонах.

Контурная – вспашка сложных склонов в направлении, близком к горизонталям местности, также в целях борьбы с водной эрозией.

Гребнистая – вспашка поперек склона. Гребни выполняются плугом, у которого один отвал удлинен.

Мелиоративная – глубокая вспашка специальными плугами для улучшения свойств почвы.

Взмет пласта – вспашка на малой скорости плугом с культурной лемешно-отвальной поверхностью без предплужников.

Безотвальная – обработка почвы плугами без отвалов, т.е. обработка без оборота пласта.

Вспашка с почвоуглублением – обработка с углублением пахотного слоя без выноса его на поверхность.

Скоростная – вспашка плугами со скоростными корпусами. На малых (до 7 км/ч) скоростях плуг будет работать плохо.

Гладкая вспашка – обработка почвы плугами с право- и левооборотными корпусами.

Ромбическая – получила свое название от формы пласта, в сечении напоминающего ромб. Ромбическая имеет ряд преимуществ.

Кинематические характеристики агрегата

При любых способах движения агрегата его траектория состоит из прямолинейных и криволинейных участков. В случае криволинейного движения отдельные точки агрегата движутся с резкой скоростью и описывают различные траектории. Точку агрегата, относительно которой определяются параметры всех других его точек, называют центром агрегата. За центр агрегата при расчетах принимается проекция на плоскость, по которой он движется: на колесных тракторах - с одной ведущей осью- середина ведущей оси,

на гусеничных тракторах -точки пересечения продольной оси симметрии трактора с плоскостью, проведенной через середины опорных частей гусениц,

на колесных тракторах с двумя ведущими осями и управляемыми колесами каждой - середина прямой, соединяющей центры ведущих осей,

на колесных тракторах, имеющих шарнирное сочленение рамы,- центр шарнира.

1. Кинетический центр агрегата (КЦА) – это усл. точка, по траектории которой анализируют движение МТА.

2. Кин. длина агрегата – это расстояние от КЦА до конца раб. органов агрегата: L К = L Т + L С + L М (длина трактора + дл. сцепки + дл. машины).

3. Длина выезда – это расстояние, на кот. перемещается центр агрегата от контр. линии по ходу МТА перед началом и в конце поворота (зависит от кинетической длины и ширины захвата). E = a e · L К ; длина выезда агрегата e= a e · B р.

4. Кин. ширина (d К) – это расстояние от продольной оси симметрии агрегата до конца раб. Органов.

5. Центр поворота – это мгновенная точка, относительно которой в данный момент совершается поворот агрегата.

6. Сред. радиус поворота – зав-ит от ширины захвата и скорости поворота V.

7. Ширина колеи – опр-ся междурядьем, а продольная база трактора соответственно равна конструктивной.

Уборка сельскохозяйственной культуры. Способы уборки.

Уборка урожая - комплекс работ на завершающей стадии производства в земледелии. Включает несколько этапов: сбор урожая, его доставку к месту послеуборочной обработки, послеуборочную обработку, транспортировку готовой продукции на склады (или для реализации), закладку на хранение.

Современные способы У. у. основаны на применении системы машин, позволяющей исключить или сократить затраты ручного труда. Например, в комплекс машин по У. у. зерновых входят жатки, комбайны, подборщики, копнители, прессы, саморазгружающиеся транспортные средства, машины для послеуборочной обработки урожая (очистки, сортировки, сушки), механизмы по разгрузке транспортных ёмкостей и загрузке зерна в склады, оборудование по взвешиванию и контролю качества зерна и др.

Основной этап У. у. включает 2 группы работ: снятие растительной массы (скашивание зерновых и трав, выкопка корнеклубнеплодов, теребление льна, сбор плодов и ягод) и послеуборочную обработку. Способ уборки определяют с учётом биологических особенностей культуры, климатических условий и технического оснащения отрасли. Например, в производстве зерна применяют прямое комбайнирование, раздельную двухфазную (скашивание жаткой и подбор валков комбайном с подборщиком), раздельную трёхфазную уборку (скашивание, подбор валков с одновременным измельчением хлебной массы и разделение вороха стационарными машинами на току). Послеуборочная обработка урожая включает очистку, сушку, сортировку и др. (в зависимости от с.-х. культуры).

Силы, действующие на МТА (схема)

Тяговый баланс трактора. Условие определения движущей силы МТА

Если Ркр

Ркр>Fc, то Рдв=Fc

Определение теоретической Vт рабочей скорости Vр движения агрегата

Vт=22,6(rк*nм/iм), км/ч

rм – радиус колеса (обода)

nм – число оборотов коленчатого вала двигателя

iт – передаточное число трансмиссии данной передачи

Vp=Vт(1-δ/100), км/ч

δ – коэффициент буксования, %

для колесных 6-12%

для гусеничных 2-5%

Тяговое сопротивление плуга и сельскохозяйственной машины

Rсхм=Ко(1+∆С(Vp-Vo)

Ko – удельное сопротивление машины при движении со скор. Vo=5км/ч

∆С – темп прироста удельного сопротивления при повышенной скорости движения от начального значения Vo

Vp – рабочая скорость движения

Сопротивление одного корпуса плуга

Rпл(к)=Кпл*a*b, кН/м2

Кпл – удельное сопротивление одного корпуса плуга

а – глубина обработки; b – ширина одного корпуса плуга

Сопротивление всего корпуса плуга

Rпл=Rпл(к)*h

Определение числа корпусов

nкор.пл.=Ркр/Rпл(к)=32/5=6,4=6шт

Количество с/х машин в агрегате

nс/х м=Ркр/Rс/хм=32/17=1,9=1 маш

Баланс времени смены

Тсм=Тр+Тхх+Ттехн+Т’техн+Тпз, ч(мин)

Тр – время работы в борозде

Тхх – время холостого хода (повороты)

Ттехн – Время технического обслуживания

Т’техн – время очистки рабочего органа

Тр, Тхх, Ттехн – время на выполнение повторяющихся операций (рабочего хода, холостых поворотов)

Т’техн – время на устранение технологич. Отказов (10-15мин)

Тпз – время на подготовку, заключительный операции – применяется равным сумме затрат времени на ЕТО трактора и с/х машины

Технология предпосевной обработки почвы


Предпосевная обработка почвы , совокупность приёмов механического воздействия на почву (боронование, культивация, перепашка и др.), выполняемых в определённой последовательности перед посевом сельскохозяйственных культур.

Задача Предпосевной обработки почвы - максимально сохранить влагу в почве, очистить поле от сорняков, разрыхлить почву, заделать удобрения, создать влажный слой на глубине заделки семян.

КПС-4, гусеничные тракторы.

Способы движения: челночный, диагональный, диагонально-перекрёстный. Принимать решение по мерам предпосевной обработки почвы надо с учетом конкретных почвенных и погодных условий, технических возможностей и сроков проведения сева. Но необходимо стремиться к тому, чтобы во время сева было достигнуто состояние почвы, оптимальное для роста и развития растений.

Вероятностный характер сопротивления машин

Тяговое сопротивление рабочей машины – суммарная сила сопротивления, возникающая при перемещении по полю. Общее тяговое сопротивления складывается из сил сопротивления перемещению машины по полю в составе агрегата и сил взаимодействия рабочих органов с обрабатываемой средой. тяговое сопротивление машины

bм – ширина захвата, м

Км- удельное сопротивление, Н/м

На тяговое сопротивление машин влияет множество факторов, значительная часть которых в процессе работы изменяется случайный, образом. Соответственно и тяговое сопротивление машины будет иметь вероятностный характер изменения. От изменчивости тягового сопротивления машины зависят показатели работы двигателя: развиваемая мощность; удельный расход топлива; показатели надёжности.

В процессе работы происходят разрегулировки СХМ, нарушение параметров рабочих органов, а это ведет к изменению удельного тягового сопротивления машины-орудия. Измерение величины тягового сопротивления прицепных сельскохозяйственных машин Осуществляется динамометрированием.Применительно же к навесным и ряду полунавесных машин задача эта значительно усложнена тем, что вектор тягового сопротивления в этом случае направлен не по одной линии, а распределен по тягам навески.

Способы движения агрегатов по полю

Перед проведением работ на поле выделяется рабочий участок - обрабатываемую часть поля. Такие участки можно разделить на загоны, а загоны - на делянки, чтобы свести до минимума передвижение агрегатов в нерабочем состоянии по полю.При обработке загонов или участков машинные агрегаты перемещаются с определенной цикличностью . Циклично повторяющееся чередование рабочих ходов, поворотов и заездов называется способом движения машинного агрегата .Среди разнообразных способов движения агрегатов выделяют три основные группы (рис. 1): гоновые (агрегаты движутся вдоль одной из сторон загона или участка): челночный, перекрытием, комбинированный, вразвал; диагональные (движение осуществляется под острым или тупым углом к сторонам загона или поля): диагонально-челночный, диагонально-перекрёстный и круговые (агрегаты при работе копируют контуры рабочего участка): угловой прокос.

Тяговый КПД трактора

Тяговый КПД определяется по формуле:

Ηтм=Nкр.т/Nе

Тяговая мощность трактора - это мощность, которая используется для перемещения сельскохозяйственных машин и орудий в процессе их работы. Тяговая мощность, соответствующая полной загрузке двигателя при нормальном числе оборотов коленчатого вала двигателя, называется наибольшей тяговой мощностью. Величина тяговой мощности зависит от эффективной мощности двигателя и от потерь на трение в трансмиссии, на самопередвижение трактора, преодоление подъемов и буксование.

Коэффициентом рабочих ходов называется отноше­ние длины рабочих ходов к соответствующему полному пути движения агрегата. Это отношение определяется по формуле:

где L -длина рабочего пути агрегата, L 0 --- длина холостого пути агрегата. При подготовке полей необходимо учитывать, что посевные, посадочные и почвообрабатывающие агрега­ты выполняют работы преимущественно гонами при движении челноком, всвал и вразвал.

31 Урав-ие движ-ия МТА.

Основ. режимы поступательного движ-ия МТА определяется из уравнения движения агрегата, основой кот. явл-ся 2 з-н механики.

Mа.п.* dV/dt = Pд – сумма Рс, где

Ма.п. – приведенная масса агрегата, кг; dV/dt – ускорение агрегата, м/с^2; Рд – движущая сила, Н; сумма Рс – сумма сил сопротивл-я движ-ю, Н.

Ма.п. опред-т из усл-я равенства кинетич. Энергии Ма.пхV^2/2 сумме кинетич-х энергий всех движущихся масс агрегата, совершающих как поступат., так и вращат. движ-е. Знач-ие Ма.п. приближенно можно вычислить ч/з эксплуатац. массу агрегата Ма из равенства Ма.п.=1,1Ма.

Рд=Рк (касат. сила тяги трактора).

Сумма Рс = Ркр + Рf +_ Ра, где

Ркр – тяговое усилие трактора; Ра – сила сопротивл-я подъему; Рf – сила сопротивл. движ-ю трактора.

Принимая перед Ра знак + при подъеме и наоборот, развернутое урав-ие движ-я МТА имеет вид:

М x dV/dt = Рк – (Ркр + Рf +_ Ра).

Для разгона МТА до треб-ой раб. скор. необх. соблюдать усл-ие:

Рк > (Pкр + Рf + Ра)

МТА с const раб. скор. (V=Vp=const) движется при dV/dt = 0, при

Рк = Ркр + Рf +_ Ра.

Торможение агрегата происх. при

Рк < (Ркр + Рf + Ра), включая Рк = 0 при выключенной муфте сцепл-я.

35 Вероятностный характер сопротивления машин. Показатели оценки изменения тягового сопротивления машины.

Во время работы МТА тяговое сопротивление (Rar ) большинства ма-

шин-орудий, входящих в него, как правило, не постоянно, а все время из-

меняется, отклоняясь от среднего значения. На это оказывают влияние:

– техническое состояние машин (острые или тупые лемеха, культива-

торные лапы и др.);

– влажность почвы;

– инородные предметы в почве (камни, корни кустарников и т. д.);

– подъемы и уклоны и др.

38 Способы движения агрегатов по полю в зависимости от его конфигурации и вида выполняемой технологической операции

Сп-бы движения МТА:

1. По направлению рабочих ходов:

a. Гоновые

b. Диагональные

c. Круговые

2. по способу подготовки обрабатываемого участка:

a. загонный

b. беззагонный

3. по направлению поворота

a. правоповоротный

b. левоповоротный

4. по числу одновременно обрабатываемых

a. однозагонные

b. многозагонные

При гоновых способах движения агрегат совершает линейные рабочие ходы параллельно одной или двум сторонам загона с холостыми поворотами на обоих концах. Этим способом совершают большинство операций: внесение удобрений, лущение стерни, дискование, боронование, прикатывание почвы.

При диагональных способах движения рабочие ходы агрегата совершаются под острым или тупым углом к сторонам загона. Данный способ рекомендуется применять на: лущение стерни, посев, прореживание посева.

Круговой способ движения – рабочие ходы сов-ся вдоль всех 4х сторон без выключения рабочих органов, за исключение середины загона, где неизбежны несколько холостых петлевых поворотов. Прим-ие – прикатывание почвы, уборка наземной части урожая.


39 Кинематические характеристики агрегата(центр, длина, ширина,)

При любых способах движения агрегата его траектория состоит из прямолинейных и криволинейных участков. В случае криволинейного движения отдельные точки агрегата движутся с резкой скоростью и описывают различные траектории. Точку агрегата, относительно которой определяются параметры всех других его точек, называют центром агрегата. За центр агрегата при расчетах принимается проекция на плоскость, по которой он движется (рис. 3):

на колесных тракторах (1) с одной ведущей осью- середина ведущей оси,

на гусеничных тракторах (2)-точки пересечения продольной оси симметрии трактора с плоскостью, проведенной через середины опорных частей гусениц,

на колесных тракторах (3) с двумя ведущими осями и управляемыми колесами каждой - середина прямой, соединяющей центры ведущих осей,

на колесных тракторах (4), имеющих шарнирное сочленение рамы,- центр шарнира.

Безотвальная обработка почвы

приём рыхления почвы орудиями, не оборачивающими пласта; применяется при осенней основной глубокой и мелкой обработке почвы (См. Обработка почвы), при обработке паров и весенней предпосевной подготовке почвы. Глубокую Б. о. п. в Советском Союзе проводят глубокорыхлителями-плоскорезами, мелкую - культиваторами-плоскорезами и штанговыми культиваторами. Эти орудия в меньшей степени распыляют верхний слой почвы, сохраняя на поверхности поля стерню и другие растительные остатки, что имеет большое значение в условиях степных районов (Южный Урал, Западная и Восточная Сибирь, Алтайский край, Казахская ССР). Стерня защищает почву от ветровой эрозии, способствует лучшему задержанию на полях снега и тем самым накоплению в почве влаги.

Во многих странах издавна проявлялся интерес к Б. о. п. В 80-х гг. 19 в. русские учёные Д. И. Менделеев и П. А. Костычев не считали обработку почвы с оборачиванием пласта всюду обязательным и необходимым приёмом. В конце 19 в. И. Е. Овсинский предложил «Новую систему земледелия». Заключалась она в замене глубокой отвальной вспашки многократными обработками на глубину 5-6 см. В начале 20 в. в южных районах Франции взамен вспашки была предложена мелкая Б. о. п. пружинными культиваторами. Б. о. п. изучалась в Германии (Ф. Ахенбах и др., 1921). Приёмы Б. о. п. исследовались (1933-1936) в Англии, но, как и в Германии, не получили распространения. Широко практикуют Б. о. п. в Канаде в связи с необходимостью защитить почву от ветровой эрозии. В 1943 американский фермер Э. Фолкнер предложил заменить обычную вспашку поверхностной безотвальной обработкой; он высказал мнение, что глубокая отвальная вспашка нарушает нормальные биохимические процессы в почве и способствует эрозии.

В СССР идею Б. о. п. развил учёный колхозник-опытник Т. С. Мальцев , который в 40-х гг. на основании многолетних опытов пришёл к выводу о необходимости отказаться от применения отвальной вспашки на чернозёмных почвах Зауралья. Мальцев рекомендовал чередовать глубокую Б. о. п. плугами без отвалов с поверхностной многократной обработкой дисковыми лущильниками. Такая система обработки почвы в колхозе «Заветы Ленина» Шадринского района Курганской области в течение многих лет обеспечивает получение урожая яровой пшеницы до 20 ц и более с 1 га. Однако проведённые опыты в степных и лесостепных зонах Западной Сибири и Казахстана показали, что недостатком такой системы обработки почвы является уничтожение стерни дисковыми лущильниками и сильное распыление ими почвы. Поэтому в районах ветровой эрозии эта система обработки не нашла широкого распространения.

Исследования Б. о. п. в Советском Союзе применительно к степным районам продолжает Всесоюзный научно-исследовательский институт зернового хозяйства, который ведёт работу по внедрению в производство Б. о. п. новыми орудиями типа плоскорезов, обеспечивающих сохранение на поверхности почвы стерни. Лучшее увлажнение почвы при безотвальной её обработке обусловливает получение в засушливых степных районах более высоких урожаев яровой пшеницы и других культур. Например, в опытном хозяйстве Всесоюзного научно-исследовательского института зернового хозяйства с производственных посевов в среднем за 7 лет (1961-67) было получено яровой пшеницы по безотвальной обработке 11,5 ц с 1 га, а по отвальной зяблевой вспашке лишь 9,0 ц. Институт всесторонне изучает Б. о. п. в общем комплексе разработанных им противоэрозионных (почвозащитных) мероприятий.

Лит.: Овсинский И. Е., Новая система земледелия, пер. с польск., М., 1911; Мальцев Т.С., Сборник статей и выступлений, М., 1955; Беннет Х. Х «Основы охраны почвы» пер. с англ., М., 1958; Фолкнер Э., Безумие пахаря, пер. с англ., М., 1959; Яхтенфельд П. А., Культура яровой пшеницы в Сибири, М., 1961; Проблемы сельского хозяйства Северного Казахстана и степных районов Западной Сибири, Материалы выездной сессии ВАСХНИЛ, М., 1967.

А. И. Бараев.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Безотвальная обработка почвы" в других словарях:

    Безотвальная обработка почвы - рыхление почвы без изменения расположения ее слоев горизонтов. Это экологичный и древний способ обработки почвы, возраст которого равен возрасту земледелия. При Б.о.п. лучше сохраняется влага и создаются благоприятные условия для сохранения… … Экологический словарь

    Рыхление почвы без изменения расположения ее слоев горизонтов. Это экологичный и древний способ обработки почвы, возраст которого равен возрасту земледелия. При Б.о.п. лучше сохраняется влага и создаются благоприятные условия для сохранения… … Словарь бизнес-терминов

    Безотвальная обработка почвы обработка почвы плоскорезом. При вспашке не производится оборачивание пахотного слоя с сохранением пожнивных остатков на поверхности почвы. В определённых почвенно климатических и агротехнических условиях… … Википедия

    безотвальная обработка почвы - Обработка почвы без оборачивания обрабатываемого слоя. [ГОСТ 16265 89] Тематики земледелие Обобщающие термины обработка почвы … Справочник технического переводчика

    Рыхление почвы на глубине 20 30 см (без оборачивания пласта) плугами со снятыми отвалами. Основное звено системы обработки почвы, предложенной в 1951 Т. С. Мальцевым для черноземов Зауралья. При безотвальной обработке почвы меньше распыляется… … Большой Энциклопедический словарь

    Рыхление почвы на глубину 20 30 см (без оборачивания пласта) плугами со снятыми отвалами. Основное звено системы обработки почвы, предложенной в 1951 Т. С. Мальцевым для чернозёмов Зауралья. При безотвальной обработке почвы меньше распыляется… … Энциклопедический словарь

    БЕЗОТВАЛЬНАЯ ОБРАБОТКА ПОЧВЫ - рыхление почвы безотвальными орудиями без оборачивания её слоев. Широко применяется в условиях недостаточного увлажнения, в степных р нах, подверженных ветровой эрозии и на склоновых землях (Юж. Урал, Сев. Казахстан, Зап. Сибирь, Поволжье, Юж.… … Сельско-хозяйственный энциклопедический словарь

    безотвальная обработка почвы - безотвальная обработка почвы, рыхление почвы безотвальными орудиями без оборачивания её слоев. Широко применяется в условиях недостаточного увлажнения, в степных районах, подверженных ветровой эрозии и на склоновых землях (Южный Урал, Северный… … Сельское хозяйство. Большой энциклопедический словарь

    Обработка почвы приёмы механического воздействия на почву, способствующие повышению её плодородия и созданию лучших условий для роста и развития растений. Содержание 1 Историческая периодизация 1.1 Посев в лунки … Википедия

    Приёмы механического воздействия на почву (См. Почва), способствующие повышению её плодородия и созданию лучших условий для роста и развития растений. Применяя О. п., придают пахотному слою оптимально рыхлое мелкокомковатое строение,… … Большая советская энциклопедия

Книги

  • Безотвальная обработка почвы в севообороте. Научные исследования и практическое применение , Н. П. Вострухин. Работа посвящена весьма актуальной проблеме – системе отвальной (вспашка) и безотвальной (под отдельные культуры севооборота и до полного исключения вспашки) обработки почвы. Безотвальная…

БЕЗОТВАЛЬНОЕ ЗЕМЛЕДЕЛИЕ ТЕРЕНТИЯ МАЛЬЦЕВА

Терентий Семёнович Мальцев не просто разработал оптимальную систему земледелия для Зауралья. Он сумел сделать это вопреки страстной вере в травополье и риску пойти под суд за нарушение закона о глубокой пахоте.

В 1935 году, на встрече в Москве, Вильямс внушил Мальцеву убеждённую веру в успех травополья. Без сомнений Мальцев ввёл травопольные севообороты. Их тогда по указу вводили все. И почти все, кто не получил результата, вскоре опустили руки и смирились. Мальцев вместо этого организовал опытную работу. Он сильно рисковал, но результат был для него важнее всего. И он победил.

О Мальцеве говорили и писали много разного и часто противоречивого. Одни восторгались его смелостью и результатами, другие ставили ему в вину отсутствие научных степеней и чёткой теоретической базы. Для меня же важно главное: Мальцев был думающим практиком, нашёл способ увеличить плодородие почвы и получил хорошие результаты. И с теоретической базой у него всё в порядке. Его система – прекрасный пример гибкого приспособления к местным условиям, создания местной агрономии. Он на деле показал: правильная агрономия может быть только местной. Она должна родиться из опыта. Взаимодействие почв, климата, площади, набора культур и технических возможностей уникально в каждом хозяйстве.

С удовольствием привожу свой конспект его книги «Система безотвального земледелия».

Т. С. МАЛЬЦЕВ

СИСТЕМА БЕЗОТВАЛЬНОГО ЗЕМЛЕДЕЛИЯ (1988 г.)


1. ПРИРОДА И ЧЕЛОВЕК

ОРГАНИЧЕСКАЯ МАССА ПОЧВЫ –
ГЛАВНЫЙ ЭЛЕМЕНТ ЕЁ ПЛОДОРОДИЯ

«Земля, на которой мы возделываем хлеб, представляется мне в виде шахматной доски с множеством клеток-массивов. И над ней склонились двое: природа мыслящая – то есть человек, и природа не мыслящая – стихия, погодные и другие условия. …Белыми всегда играет природа, за ней и право первого хода. Действует она самоуверенно, будучи хозяйкой положения. Поэтому задача земледельца очень сложна, и всякий раз она меняется. …Резервы нашей земли огромны, но берём мы от неё чаще всего лишь то, что лежит на поверхности, да и этим пользуемся неосторожно».

Потребность в хлебе растёт. Годных почв всё меньше и меньше, а окультуривать негодные – дорого. Поэтому самый надёжный путь – постоянное повышение плодородия почвы и урожайности на уже освоенных землях.

Понятие «плодородия» неоднозначно, но стержень, основу его составляют органические соединения, разные и качественно, и количественно.
Известно, что многолетняя залежь* увеличивает плодородие, а целина, пущенная в оборот, его со временем растрачивает. На основе этого учёные прошлого сделали ошибочный вывод – что плодородие почвы неизбежно падает (закон убывающего плодородия).

«…Но разрушаться может только то, что создаётся. …Для нас очень важно знать, при каких условиях в почве проявляется больше функция созидания, а когда – разрушения.

Органическая масса почвы возникла и накапливается в ходе эволюции. Причём при одном непременном условии: живые организмы (главным образом растения) должны оставлять после себя органической массы больше, чем за свою жизнь взяли их почвы в качестве пищи… Если бы растения такой способностью не обладали, то и почвы как таковой не было бы».

Наша задача – действовать так, чтобы преобладала функция созидания.

В природе запас плодородия накапливается на поверхности в виде дернины (лесной подстилки). Слой остатков растений и корней постепенно нарастает, разрушается микробами и становится перегноем.

«Казалось бы, где больше разрушается, там сильнее и истощается плодородие. Но получается другое: разрушается больше, но ещё больше в естественных условиях и создаётся. Количество органики нарастает за счёт остатков новых растений».

Это естественно: новые растения создают новую органику из воздуха и воды, а минералы из огромного объёма почвы просто собирают в своём теле. В почву всегда возвращаются все использованные минералы плюс новая органическая масса.

ОСНОВНЫЕ ПУТИ ПОВЫШЕНИЯ ПЛОДОРОДИЯ ПОЧВЫ

«Новые земли обычно более плодородны, чем старопахотные, особенно в первые годы после их освоения.

Значит, пока растения на целинной или залежной земле росли сами по себе, когда почву не пахали, она не обеднялась, а обогащалась. Стоило эти участки распахать и начать возделывать культурные растения, как… плодородие начинало заметно убывать.

Агрономическая наука долго объясняла это тем, что на залежах растут многолетние травы, а после распашки – однолетние. Многолетние растения могут создавать и восстанавливать плодородие, а однолетние только разрушают его. Подтверждением тому служили травопольные севообороты… Многолетние травы за относительно короткий срок действительно заметно увеличивают плодородие. Этот факт неоспорим, и мы не собираемся возражать.


«…Но поскольку наука была убеждена в неспособности однолетних растений повышать плодородие, она и не могла предложить ничего другого, как только травопольные* севообороты». (Травопольные – когда многолетние травы занимают 2-3 года из 9-10 лет, чтобы восстанавливать плодородие и обеспечивать животных кормами. Рассматриваются далее в трудах.)

Специальные наблюдения показали, что положительное действие многолетних трав проявляется только 1-2 года. Значит, возвращаясь на своё место только через 6-8 лет, они не могут ни приостановить падение плодородия, ни тем более увеличить его. Почему же именно однолетники считаются разрушителями плодородия?..

«Все растения, как однолетние, так и многолетние, состоят из одинаковых веществ, которые могут превращаться в перегной. Дело только в условиях, в которых разлагаются корневые и пожнивные остатки этих культур. А они совершенно разные».

Многолетники растут несколько лет, и почва не пашется. Корни разлагаются в плотном слое, воздуха мало, и постоянно прикреплены к частицам почвы. Под однолетниками почва пашется, воздуха много, частицы почвы смещаются, перетираются, и органика сбрасывается на дно борозды.

«Если бы остатки однолетних растений разлагались бы несколько лет тоже без вспашки в уплотнённом верхнем слое, то и они увеличивали бы её плодородие. Получается, что без участия человека растения улучшают почву, а при его вмешательстве – разрушают».

Если учитывать законы природы при обработке почвы, растения могут кормить и нас, и почву – они создают всего с избытком. И однолетние, и многолетние. Знака равенства между ними ставить не следует – надо это детально изучить. Но если признать, что все растения – многолетние, однолетние, злаковые, бобовые – могут оставлять после себя почву более плодородной, чем она была, то вопрос о прогрессивном поднятии плодородия станет виден яснее.

Есть ещё важнейший вопрос. Мы заботимся о том, чтобы корни проникли глубже, рыхля почву и заделывая вглубь удобрения. В природе всё наоборот!

«В естественных условиях растения основную массу корней располагают у поверхности почвы. Переплетаясь, корни создают своего рода войлок, который постепенно утолщается, превращаясь в дернину. Почему это происходит? Очевидно, потому, что корни у поверхности больше находят для себя пищи, тепла влаги и воздуха».

Суть безотвальной системы: в подражание природе верхний слой почвы постоянно держат на поверхности. Для этого созданы специальные орудия, и прежде всего плуг для безотвальной обработки. На поверхности накапливается органика, а в то же время под поверхностью работают корни культурных растений. Поле, как степь, одновременно создаёт и урожай, и перегнойный «дёрн» для себя. По сути, Мальцев соединил несоединимое: залежный покой поля с его обычной эксплуатацией.

«Если поставить однолетние растения в сравнительно одинаковые условия с многолетними травами, то есть сеять без вспашки, а лишь при поверхностной обработке, мы тем самым создаём на хлебном поле некую почвенную лабораторию, подобную той, что действует в естественных условиях, формируя чудодейственный дёрн».

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ ШАДРИНСКОЙ ОПЫТНОЙ СТАНЦИИ

Сравнивались разные режимы обработки почвы под пшеницей. В почве периодически определялись: агрегатный состав послойно, накопление органического вещества, влажность , содержание нитратов и главных элементов питания. Результаты подтвердили теорию.

АГРЕГАТНЫЙ СОСТАВ ПОЧВЫ

1. Под всеми, одно - и многолетними культурами, примерно до середины июля структурность* (*процент неразмываемых комочков крупнее 0,25 мм) увеличивается, а после этого уменьшается. Чем глубже, тем выше структурность по величине, но слабее выражено её летнее изменение. Например:Вывод: чем плотнее почва, тем лучше её структура.

Вплоть до начала отмирания однолетней культуры образование структуры преобладает над разрушением.

Обнаружено, что послеуборочное лущение стерни (по Вильямсу) заметно увеличивает структурность.
Исследовалась почва под однолетними бобовыми (горох и чина*). Первый анализ – в июне. Лущение стерни в начале сентября. Второй анализ – в конце октября. Лущение увеличило структурность на 10-16% в сравнении с июнем, тогда как без лущения структурность уменьшилась на 5-32% (чем глубже, тем потеря структурности выше). Вывод: лущение стерни сразу после уборки необходимо. Оно не только сохраняет влагу и заделывает на оптимальную глубину семена сорняков, чем провоцирует их всходы, но и увеличивает структурность, активизируя биологические процессы в почве.

«Одним из вопросов, постоянно дискутируемых в области обработки почвы, как известно, является вопрос об отвальной вспашке и безотвальном рыхлении» Это строки из только что прочитанной мной книги «Обработка почвы как фактор регулирования почвенного плодородия». Авторы монографии подводят итоги двадцатилетних исследований НИИСХ ЦЧП им В.В.Докучаева.

В этих опытах применялись следующие виды основной обработки почвы: пахота с отвалом на 20-22 см, 25-27 см, 30-32 см, 35-37 см; обработка плоскорезом на 10-12см, рыхление плугом Мальцева на 25-27 см, чизелевание на глубину 40-45 см, а также сочетание отвальной вспашки на 20-22 см с чизелеванием. «Неясность ряда вопросов об отвальной и безотвальной обработке, в том числе по применению плоскорезов побудила научно-исследовательские учреждения и вузы Центрально-черноземной зоны провести работу по изучению изменения физико-химических, биохимических и микробиологических свойств почвы при применении указанных способов». Авторы отслеживали такие параметры, как численность и состав микроорганизмов в разных слоях почвы, биологическая активность почвы, содержание в ней влаги, гуминовых кислот, структурных агрегатов, плотность и воздухопроницаемость почвы, засоренность сорными растениями и т.д. Особое внимание было обращено на процессы накопления и минерализации (разложения) гумуса. Изучалась взаимосвязь обработки почвы и применения удобрений.

Авторы подчеркивали, что выводы, к которым они пришли, имеют значение прежде всего для Центрально-черноземной зоны, в других регионах могут быть получены совсем другие результаты. Одной из серьезнейших ошибок они считают некритический перенос отдельных агротехнических приемов хорошо себя зарекомендовавших в одной зоне земледелия на другие зоны и типы почв. Как это произошло в свое время, например, с травопольной системой Вильямса.

Итак, ЦЧ зона. Это район неустойчивого увлажнения, причем, чем больше мы продвигаемся с северо-запада на юго-восток, тем меньше осадков. Часто засухи наступают в конце весны- начале лета. Атмосферная засуха сопровождается суховеями, которые в короткие сроки могут погубить весь урожай. Преобладающими почвообразующими породами в зоне являются лессовые глины и суглинки. На этом субстрате сформировались высокоплодородные почвы с содержанием гумуса 7-8%. Не секрет, что в процессе использования черноземов человеком почвы потеряли часть гумуса, истощились. Поэтому актуальна задача сохранения и восстановления этих уникальных почв.

По мнению авторов «наиболее важным направлением мобилизации черноземов является биологическое. (…) Отсюда изучение биогенности черноземов, разработка путей, способствующих ее повышению, является важной задачей» Надо сказать, что из четырех авторов монографии двое - специалисты именно в области биологизации земледелия. Микроорганизмы - вот главные труженики почв. И если взять чернозем обыкновенный ЦЧ зоны, то их количество в слоях почвы будет распределяться следующим образом (в опыте Шатиловской опытной станции Орловской обл, тыс. штук в 1г сухой почвы): 0-5 см - 1984, 5-10 см - 1685, 10-15 см - 1707, 15-20 см - 906, 20-25 см - 539, 25-30 см - 384, 30-40 см - 163.

А теперь внимание: вопрос. Какой, по вашему мнению, основной вывод сделали исследователи, какой способ обработки почвы оказался наиболее полезным для черноземов в условиях ЦЧ зоны? И почему?

Безотвальная система земледелия, разработанная Терентием Мальцевым в середине прошлого века, доказала свою эффективность и легла в основу современных ресурсосберегающих технологий, хотя споры вокруг нее не прекращаются до сих пор. В канун 120-летия со дня рождения агрария-новатора, которое земляки отметят 10 ноября, корреспондент "РГ" попыталась выяснить, много ли у него последователей на родине.

Уроки народного академика

Сергей Мальцев живет и работает в селе Мальцево Шадринского района - том самом, где родился . Правда, знаменитому земляку он лишь однофамилец, хотя уверен: общие корни наверняка есть. А вот что касается профессиональных интересов - тут точно родственные души.

Я еще школьником бегал к Терентию Семеновичу, смотрел, как он проводит опыты на полях, слушал его рассказы, как надо растить хлеб. Еще тогда решил: стану агрономом, - вспоминает Сергей Мальцев. - Особенно запомнилось его отношение к земле. Он называл ее не иначе как "земля-матушка", "земля-кормилица", разговаривал с ней, как с живым существом.

После сельхозинститута Сергей вернулся в село, поработал семеноводом, агрономом в бригаде, с 1990 года он главный агроном. Признается, что не раз предлагали стать во главе хозяйства, да он наотрез отказался: не мое, мол.

Нынешним урожаем главный агроном ООО "Агро-Клевер" доволен: с 5,4 тысячи гектаров намолотили 16,2 тысячи тонн зерна - с каждого гектара по 30,1 центнера. Правда, рекорд хозяйства - 36,6 центнера, но год на год не приходится.

Уроки Терентия Семеновича мне очень пригодились, - рассуждает Сергей Мальцев. - Конечно, за 60 с лишним лет технологии ушли далеко вперед, и разработанная им система минимальной обработки почвы претерпела много изменений, но основа осталась. По сути, мальцевская школа земледелия включает четыре принципиально важных момента: сроки сева, обработка почвы, наличие паров и отношение к земле. Вопреки назойливым кураторам, которые указывали начинать посевную уже в апреле, он раньше 15 мая не давал пшеницу сеять. Сейчас, правда, климат изменился настолько, что даже в мае земля еще сырая и не всегда можно выйти в поле. А вот что касается обработки, то тут строго по Мальцеву: с осени проходим поля дискаторами на глубину примерно 8-10 сантиметров, весной закрываем влагу, даем сорнякам взойти, потом их уничтожаем и сразу сеем. У нас в хозяйстве вообще нет отвальных плугов для вспашки, все орудия приспособлены для безотвальной обработки почвы, в том числе и паров.

Для повышения плодородия на предприятии используют солому. Раньше ее скирдовали, увозили на фермы, а лишнюю сжигали. Сейчас скота мало, поэтому после уборки хлебов комбайн солому тщательно измельчает и равномерно расстилает по всему полю, где она перегнивает, возвращая в землю органические вещества.

Мальцев называл солому и растительные остатки, негодные на корм, важнейшим резервом органики, сжигать их считал расточительством, - поясняет агроном. - А вот "химии" он не признавал, тут мы с ним расходимся. К сожалению, нынче в борьбе с сорняками и болезнями растений без нее не обойтись. Если раньше против сорняков можно было использовать севооборот, то сейчас на наших полях господствует монокультура - около 90 процентов засеваем пшеницей, поэтому этот агроприем уже малоэффективен.

Хлебороб признался, что не всегда также удается выдержать рекомендацию патриарха оставлять 20-25 процентов посевной площади под чистые пары (вспаханное поле, которое на одно лето оставляют незасеянным). Но все же убежден: лучшей системы земледелия еще никто не придумал.

От плуга не отказываются

А вот Сергей Велижанцев, руководитель ООО "Соровское" из одноименного села, от плуга не отказался, хотя часть полей обрабатывает по мальцевской системе. По его наблюдениям, глубокая вспашка гораздо эффективнее против сорной травы, чем дискаторы, да и урожай выше.

Мы нынче на паровых полях, которые пахали плугом, получили порядка 38 центнеров с гектара, а там, где была минимальная обработка, около 28-ми, - рассказывает он. - К тому же говорят, что за счет минимальной обработки почвы можно хорошо сэкономить, но это не совсем так: только на борьбу с сорняками и вредителями уходит столько средств, что гораздо дешевле вспахать плугом.

Вместе с тем в хозяйстве активно используют мальцевский севооборот - уже перешли на четырехпольный.

По данным шадринского управления сельского хозяйства, в районе применяют три вида технологии обработки почвы: классическую (плугом), минимальную и нулевую, вообще исключающую механическую обработку (No-Till). При этом мальцевскую систему используют свыше 70 процентов хозяйств, а на более современную нулевую перешли примерно десять процентов.

Жизнь не стоит на месте и вынуждает аграриев искать новые способы повышения производительности труда, плодородия почвы, защиты растений, - говорит главный специалист по растениеводству и земледелию райсельхозуправления Василий Бутаков. - У Мальцева был набор орудий труда, соответствующий его эпохе. Изменились и сроки сева: они существенно сдвинулись. Наши хлеборобы нашли "противоядие" в виде такого сорта пшеницы как Ирень. Он имеет короткую вегетацию, успешно вызревает и дает неплохой урожай. Правда, этот сорт не районирован, из-за чего мы выслушали много критики. Однако практика показала, что мы на правильном пути.

По мнению специалиста, сама по себе технология мало что значит, если не заниматься интенсификацией. Например, в том же Шадринском районе ежегодно вносят в почву около 10 тысяч тонн минеральных удобрений. В селе Мальцево есть научная лаборатория имени Терентия Мальцева, в селе Чистопрудном - опытное поле Курганского НИИСХ. Традиционно тесное сотрудничество с наукой позволяет местным земледельцам занимать лидирующие позиции в Зауралье по производству зерна и кормов.

Главное - без шаблона

В других районах области к мальцевской системе тоже относятся творчески. Так, глава крестьянско-фермерского хозяйства из Лебяжьевского района Михаил Губанов от плуга вообще отказался.

Я всегда придерживался мальцевских принципов земледелия хотя не считаю себя абсолютным приверженцем его системы, - поделился он мнением. - Например, Мальцев рекомендовал на паровых полях глубокую вспашку плугом проводить раз в четыре-пять лет, а в остальное время - поверхностную обработку почвы. Мы вообще отказались от глубокой вспашки. Во-первых, это затратно, во-вторых, при глубокой обработке семена сорняков тоже глубоко проникают в землю, а потом приходится опять с ними бороться. А при поверхностной обработке, которую применяем уже 25 лет, такой сорняк как овсюг мы изжили полностью.

Петр Ивахненко, гендиректор ЗАО "Степное" из Половинского района считает, что увлечение минимальной обработкой земли, если использовать ее прямолинейно и нерационально, может даже нанести вред. За долгие годы работы на земле он выработал свои методы, хотя советами народного академика тоже пользуется.

Мудрость Терентия Мальцева в том, что он как раз предостерегал земледельцев от шаблонов, - отмечает заместитель директора по научной работе Курганского НИИ сельского хозяйства Сергей Гилев. - Он говорил: мальцевская система - это у меня в селе Мальцево, а у вас должна быть своя, в зависимости от почвенных, климатических, а сегодня еще и экономических условий. Говоря современным научным языком, речь идет об адаптивно-ландшафтном земледелии. Мы еще в 2010 году разработали такую систему для Курганской области.

Институт - преемник и продолжатель идей Терентия Мальцева. По мнению здешних ученых, безотвальная обработка почвы (без оборота пласта) - основа современных ресурсо- и влагосберегающих технологий, что особенно актуально для зоны рискованного земледелия, к которой относится Зауралье. По результатам исследований НИИ, в течение 84 лет в центральной зоне области наблюдалось одиннадцать сильнейших засух и 29 - средней интенсивности, то есть 40 засушливых лет - считай, каждый второй. Поэтому урожайность во многом зависит от влагообеспеченности растений. Как тут не вспомнить Мальцева, который говорил, что "разумнее часть земли держать под парами, невзирая ни на какие обстоятельства", потому что при засухе паровые поля служат, по сути, гарантом будущего урожая.

Наши многолетние исследования и практика передовых хозяйств свидетельствуют: за счет широкого применения современных ресурсо- и влагосберегающих технологий можно существенно снизить негативные последствия засух в нашем регионе, - говорит Сергей Гилев. - С увеличением засушливости климата повышается эффективность минимальных и нулевых способов обработки почвы. Для всех зон Курганской области эффективна комбинированная система, включающая чередование глубоких и поверхностных приемов обработки, как рекомендовал Терентий Семенович. Во многом благодаря ресурсосберегающим технологиям Зауралье всегда с урожаем.

Прямая речь

Лидия Мальцева, ведущий научный сотрудник лаборатории селекции пшеницы Курганского НИИСХ:

В свое время отца, Терентия Семеновича Мальцева, критиковали за то, что он был против массового применения гербицидов. Между тем сейчас наука развивается в направлении поиска безвредных химических веществ, которые не оставляют следов в зерне.

Статьи по теме: